22 research outputs found

    Spring-block model for a single-lane highway traffic

    Full text link
    A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.Comment: 6 pages, 7 figure

    A characteristic particle method for traffic flow simulations on highway networks

    Full text link
    A characteristic particle method for the simulation of first order macroscopic traffic models on road networks is presented. The approach is based on the method "particleclaw", which solves scalar one dimensional hyperbolic conservations laws exactly, except for a small error right around shocks. The method is generalized to nonlinear network flows, where particle approximations on the edges are suitably coupled together at the network nodes. It is demonstrated in numerical examples that the resulting particle method can approximate traffic jams accurately, while only devoting a few degrees of freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth International Workshop Meshfree Methods for PDE 201

    The Fundamental Concept of Capacity

    No full text

    Allgemeines zur Verkehrsflussmodellierung

    No full text

    Reaction of lines of the rapid cycling brassica collection and Arabidopsis thaliana to four pathotypes of Plasmodiophora brassicae

    No full text
    The clubroot reaction of five Rapid Cycling Brassica Collection (RCBC) lines (Brassica carinata, B. juncea, B. napus, B. oleracea, and B. rapa) and 84 lines of Arabidopsis thaliana to pathotypes 2, 3, 5, and 6 of Plasmodiophora brassicae (as classified on William's system) was assessed. Also, the reaction of the Arabidopsis lines to a single-spore isolate of each of pathotypes 3 and 6 was compared with that of a field isolate. Seedlings were inoculated with resting spores of P. brassicae, maintained at 25 and 20\ub0C (day and night, respectively), and assessed for clubroot incidence and severity at 6 weeks after inoculation. Several lines of A. thaliana and RCBC exhibited a differential response to pathotype but none of the lines were immune. Among the RCBC lines, B. napus was resistant to all of the pathotypes; B. oleracea was resistant to pathotypes 2, 3, and 5; B carinata and B. rapa were resistant to pathotypes 2 and 5; and B. juncea was susceptible to pathotypes 5 and 6 and had an intermediate response to pathotypes 2 and 3. Line Ct- 1 of A. thaliana was highly resistant to pathotype 2, Pu2-23 was highly resistant to pathotype 5, and Ws-2 and Sorbo were highly resistant to pathotype 6. These results indicate that the lines of RCBC and A. thaliana have potential for use as model crops for a wide range of studies on clubroot, and could be used to differentiate these four pathotypes of P. brassicae. The reaction of the RCBC lines to pathotype 6 was highly correlated with response under field conditions but the reaction to the single-spore isolates of pathotypes 3 and 6 was not strongly correlated with reaction to the field collections in the Arabidopsis lines. \ua9 2013 Department of Agriculture and Agri-Food, Government of Canada.Peer reviewed: YesNRC publication: Ye

    Towards the Calibration of Pedestrian Stream Models

    No full text

    Shockwave Detection for Electronic Vehicle Detectors

    No full text
    corecore